The complex chemical Langevin equation.
نویسندگان
چکیده
The chemical Langevin equation (CLE) is a popular simulation method to probe the stochastic dynamics of chemical systems. The CLE's main disadvantage is its break down in finite time due to the problem of evaluating square roots of negative quantities whenever the molecule numbers become sufficiently small. We show that this issue is not a numerical integration problem, rather in many systems it is intrinsic to all representations of the CLE. Various methods of correcting the CLE have been proposed which avoid its break down. We show that these methods introduce undesirable artefacts in the CLE's predictions. In particular, for unimolecular systems, these correction methods lead to CLE predictions for the mean concentrations and variance of fluctuations which disagree with those of the chemical master equation. We show that, by extending the domain of the CLE to complex space, break down is eliminated, and the CLE's accuracy for unimolecular systems is restored. Although the molecule numbers are generally complex, we show that the "complex CLE" predicts real-valued quantities for the mean concentrations, the moments of intrinsic noise, power spectra, and first passage times, hence admitting a physical interpretation. It is also shown to provide a more accurate approximation of the chemical master equation of simple biochemical circuits involving bimolecular reactions than the various corrected forms of the real-valued CLE, the linear-noise approximation and a commonly used two moment-closure approximation.
منابع مشابه
Chemical Master versus Chemical Langevin for First-Order Reaction Networks
Markov jump processes are widely used to model interacting species in circumstances where discreteness and stochasticity are relevant. Such models have been particularly successful in computational cell biology, and in this case, the interactions are typically first-order. The Chemical Langevin Equation is a stochastic differential equation that can be regarded as an approximation to the underl...
متن کاملStochastic quantization at finite chemical potential
A nonperturbative lattice study of QCD at finite chemical potential is complicated due to the complex fermion determinant and the sign problem. Here we apply the method of stochastic quantization and complex Langevin dynamics to this problem. We present results for U(1) and SU(3) one link models and QCD at finite chemical potential using the hopping expansion. The phase of the determinant is st...
متن کاملThe Role of Dephasing in the Assessment of DMRI through Langevin Equation Approach
Introduction: Diffusion Weighted Magnetic Resonance Imaging (DWMRI) provides visual contrast, depends on Brownian motion of water molecules. The diffusive behavior of water in cells alters in many disease states. Dephasing is a factor of magnetic field inhomogeneity, heterogeneity of tissue and etc., which is associated with the signal amplitude. In a series of DWI acquisition...
متن کاملComplex Langevin dynamics at finite chemical potential: mean field analysis in the relativistic Bose gas
Stochastic quantization can potentially be used to simulate theories with a complex action due to a nonzero chemical potential. We study complex Langevin dynamics in the relativistic Bose gas analytically, using a mean field approximation. We concentrate on the region with a Silver Blaze problem and discuss convergence, stability and fixed points. The real distribution satisfying the extended F...
متن کاملChemical Master Equation and Langevin Regimes for a Gene Transcription Model
Gene transcription models must take account of intrinsic stochasticity. The Chemical Master Equation framework is based on modelling assumptions that are highly appropriate for this context, and the Stochastic Simulation Algorithm (also known as Gillespie’s algorithm) allows for practical simulations to be performed. However, for large networks and/or fast reactions, such computations can be pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 141 2 شماره
صفحات -
تاریخ انتشار 2014